

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS

2605

Pure Mathematics 5

Wednesday

12 JANUARY 2005

Afternoon

1 hour 20 minutes

Additional materials:

Answer booklet Graph paper

MEI Examination Formulae and Tables (MF12)

TIME

1 hour 20 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer any three questions.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The allocation of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The total number of marks for this paper is 60.

1 (a) The equation $8x^4 + 16x^3 + 1 = 0$ has roots α , β , γ and δ .

Use a suitable substitution to find a quartic equation with integer coefficients which has roots

$$8\alpha^3$$
, $8\beta^3$, $8\gamma^3$ and $8\delta^3$. [5]

- (b) When the polynomial $f(x) = x^5 + kx^4 + mx^3 + 7x 2$ is divided by (x 2), the remainder is 12. When f(x) is divided by (x + 1), the remainder is 3.
 - (i) Find k and m. [4]
 - (ii) Find the remainder when f(x) is divided by (x-2)(x+1). [4]
 - (iii) Show that f'(-1) = -30. [2]
 - (iv) Find the remainder when f(x) is divided by $(x + 1)^2$. [5]
- 2 (a) Find the exact value of $\int_{2.5}^{7.5} \frac{1}{4x^2 + 75} dx$. [5]
 - (b) (i) Starting from $\cosh x = \frac{1}{2}(e^x + e^{-x})$, show that $\cosh 2x = 2\cosh^2 x 1$. [3]
 - (ii) Show that the two stationary points on the curve $y = 7 \sinh x \sinh 2x$ have y-coordinates $3\sqrt{3}$ and $-3\sqrt{3}$.

(iii) Show that
$$\int_0^{\ln 3} (7\sinh x - \sinh 2x) \, dx = \frac{26}{9}$$
. [5]

- 3 In this question, $z = \cos \theta + j \sin \theta$ where θ is real.
 - (a) By considering z^5 , express $\tan 5\theta$ in terms of $\tan \theta$. [6]
 - (b) (i) Write $z^n + \frac{1}{z^n}$ and $z^n \frac{1}{z^n}$ in simplified trigonometric form. [3]
 - (ii) By considering $\left[\left(z-\frac{1}{z}\right)\left(z+\frac{1}{z}\right)\right]^3$, show that $\sin^3\theta\cos^3\theta = \frac{3}{32}\sin2\theta \frac{1}{32}\sin6\theta$. [6]
 - (iii) Hence find the first two non-zero terms of the Maclaurin series for $\sin^3 \theta \cos^3 \theta$. [3]
 - (iv) Given that θ^7 and higher powers may be neglected, show that

$$\sin^3\theta\cos^3\theta \approx \theta^3\cos 2\theta.$$
 [2]

- 4 (a) A curve has polar equation $r = k \sin 4\theta$, for $0 \le \theta \le \pi$, where k is a positive constant.
 - (i) Sketch the curve, using a continuous line for sections where r > 0, and a broken line for sections where r < 0.
 - (ii) Find the area of one loop of the curve. [5]
 - (b) $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ are two points on the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$. The tangents to the hyperbola at P_1 and P_2 meet at the point Q(r, s).
 - (i) Find (in terms of a, b, x_1 and y_1) the gradient of the hyperbola at P_1 , and hence show that the equation of the tangent at P_1 is $\frac{x_1x}{a^2} \frac{y_1y}{b^2} = 1$. [5]
 - (ii) Show that P_1 and P_2 lie on the line with equation $\frac{rx}{a^2} \frac{sy}{b^2} = 1$. [3]
 - (iii) Given that Q lies on a directrix of the hyperbola, show that the line P₁P₂ passes through a focus. [4]

Mark Scheme

	<u> </u>	1	
1 (a)	Let $y = 8x^3$, $x = \frac{1}{2}y^{\frac{1}{3}}$		
	$\frac{1}{2}y^{\frac{4}{3}} + 2y + 1 = 0$	M1 A1	Obtaining equation in <i>y</i>
		M1	Eliminating fractional powers
	$-\frac{1}{8}y^4 = (2y+1)^3$	A1	SR Give B3 for correct answer
	$y^4 + 64y^3 + 96y^2 + 48y + 8 = 0$	A1 5	
(b)(i)	$f(2) = 12 \implies 32 + 16k + 8m + 14 - 2 = 12$	M1	Substituting $x = 2$ or $x = -1$
	(16k + 8m = -32)		(or long division leading to a remainder in terms of <i>k</i> and <i>m</i>)
	$f(-1) = 3 \implies -1 + k - m - 7 - 2 = 3$	A1	Both equations correct
	(k-m=13)	M1	Solving to obtain k or m
	k=3, m=-10	A1 4	
(ii)	f(x) = (x - 2)(x + 1)g(x) + ax + b	B1	May be implied
(11)	Putting $x = 2$, $12 = 2a + b$	M1	Substituting $x = 2$ or $x = -1$
	Putting $x = -1$, $3 = -a + b$	A1	Both equations correct
	a = 3, b = 6		•
	Remainder is $3x + 6$	A1 4	
	OR by long division Obtaining quotient Quotient is $x^3 + 4x^2 - 4x + 4$ Obtaining a linear remainder Remainder is $3x + 6$ A1		All four terms required
(iii)	$f'(x) = 5x^4 + 12x^3 - 30x^2 + 7$	M1	
	f'(-1) = 5 - 12 - 30 + 7 = -30	A1 (ag)	
	, , , , , , , , , , , , , , , , , , , ,	2	
(iv)	$f(x) = (x+1)^2 h(x) + px + q$	B1	
	$f'(x) = (x+1)^2 h'(x) + 2(x+1)h(x) + p$	M1	
	Putting $x = -1$, $3 = -p + q$	B1	
	-30 = p	A1	
	Remainder is $-30x - 27$	B1 5	
	OR by long division		
	Obtaining quotient M1		All four terms required
	Quotient is $x^3 + x^2 - 13x + 25$ A2		Give A1 for $x^3 + x^2 +$
	Obtaining a linear remainder M1 Remainder is $-30x - 27$ A1		
	I .	1	

2 (a)	[, , , ,] ^{7.5}	M1	For arctan
	$\left[\frac{1}{2} \frac{1}{\sqrt{75}} \arctan\left(\frac{2x}{\sqrt{75}}\right)\right]_{2.5}^{7.5}$	A1A1	For $\frac{1}{2\sqrt{75}}$ and $\frac{2x}{\sqrt{75}}$
	$= \frac{1}{2\sqrt{75}} \left(\arctan \sqrt{3} - \arctan \frac{1}{\sqrt{3}} \right)$		
	$=\frac{1}{2\sqrt{75}}\left(\frac{\pi}{3}-\frac{\pi}{6}\right)$	M1	Exact evaluation of
	$=\frac{\pi}{12\sqrt{75}} \qquad \left(=\frac{\pi}{60\sqrt{3}}\right)$	A1 5	$\arctan \sqrt{3}$ or $\arctan \frac{1}{\sqrt{3}}$
	OR M1		Any tan substitution
	Let $2x = \sqrt{75} \tan \theta$ A1		any war successful on
	Integral is $\int \frac{1}{2\sqrt{75}} d\theta$ A1		
	Limits are $\frac{1}{6}\pi$ and $\frac{1}{3}\pi$ M1		For either
	Integral is $\frac{\pi}{12\sqrt{75}}$ A1		
(b)(i)	RHS = $2\left[\frac{1}{2}(e^x + e^{-x})\right]^2 - 1$		
	$= \frac{1}{2} (e^{2x} + 2 + e^{-2x}) - 1$	B1	For $(e^x + e^{-x})^2 = e^{2x} + 2 + e^{-2x}$
	$= \frac{1}{2} (e^{2x} + e^{-2x})$	B1	For $\frac{1}{2}(e^{2x} + e^{-2x}) = \cosh 2x$
	$=\cosh 2x$	B1 (ag)	For completion
(**)		3	
(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 7\cosh x - 2\cosh 2x$	B1	
	$= 0$ when $7 \cosh x - 2(2 \cosh^2 x - 1) = 0$	M1	Using (i)
	$4\cosh^2 x - 7\cosh x - 2 = 0$		
	$\cosh x = 2$ Two stationary points, at $x = \pm \operatorname{arcosh} 2$	A1	(No need to reject $-\frac{1}{4}$ explicitly)
	sinh $x = \pm \sqrt{\cosh^2 x - 1} = \pm \sqrt{3}$	M1	Two values (may be implied)
	$y = 7 \sinh x - 2 \sinh x \cosh x$	M1	± not required. M0 if not exact
	$= \sinh x(7 - 2\cosh x)$		
	$=\pm\sqrt{3}\left(7-4\right)$	M1	For $\sinh 2x = (\pm) 4\sqrt{3}$ \pm not required. M0 if not exact
	$=\pm 3\sqrt{3}$	A1 (ag) 7	
(iii)	$\left[7\cosh x - \frac{1}{2}\cosh 2x\right]_0^{\ln 3}$	B1B1	For $7 \cosh x$ and $-\frac{1}{2} \cosh 2x$
	$= \frac{7}{2} \left(3 + \frac{1}{3} \right) - \frac{1}{4} \left(9 + \frac{1}{9} \right) - \left(7 - \frac{1}{2} \right)$	M1	Exact evaluation of cosh(ln 3) or cosh(2 ln 3)
		M1	For $-(7-\frac{1}{2})$
	$=\frac{26}{9}$	A1 (ag) 5	Exact value correctly obtained

	_		
3(a)	$\cos 5\theta + j\sin 5\theta = (\cos \theta + j\sin \theta)^5$	M1	For statement of deMoivre's theorem
	$= c^5 + 5jc^4s - 10c^3s^2 - 10jc^2s^3 + 5cs^4 + js^5$	A1	or expanding $(c + js)^5$
	$\sin 5\theta = 5c^4s - 10c^2s^3 + s^5$	M1	Equating real or imaginary parts
	$\tan 5\theta = \frac{\sin 5\theta}{\cos 5\theta} = \frac{5c^4s - 10c^2s^3 + s^5}{c^5 - 10c^3s^2 + 5cs^4}$	A1	$\sin 5\theta$ and $\cos 5\theta$ both correct
	$=\frac{5\tan\theta-10\tan^3\theta+\tan^5\theta}{1-10\tan^2\theta+5\tan^4\theta}$	M1	Writing in terms of $\tan \theta$
	$= \frac{1 - 10 \tan^2 \theta + 5 \tan^4 \theta}{1 - 10 \tan^2 \theta + 5 \tan^4 \theta}$	A1 6	
(b)(i)			
(0)(1)	$\int_{0}^{\pi} \frac{1}{1} = 2\cos n\theta$	M1 A1	For $z^n = \cos n\theta + j\sin n\theta$
	$z^n + \frac{1}{z^n} = 2\cos n\theta$	111	
	$z^n - \frac{1}{z^n} = 2j\sin n\theta$	A1	
	z"	3	
(ii)	$\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^3$	D.1	
	$\left[\left(z - \frac{1}{z} \right) \left(z + \frac{1}{z} \right) \right]^{3} = -64 \mathrm{j} \sin^{3} \theta \cos^{3} \theta$	B1	
	$\begin{bmatrix} -1 & -1 & -1 \\ (-1)^3 & 6 & 2 & 3 & 1 \end{bmatrix}$		
	$\left \left(z^2 - \frac{1}{z^2} \right)^3 = z^6 - 3z^2 + \frac{3}{z^2} - \frac{1}{z^6} \right $	M1A1	
	$= 2j\sin 6\theta - 6j\sin 2\theta$	M1A1	
	$\sin^3\theta\cos^3\theta = \frac{3}{32}\sin 2\theta - \frac{1}{32}\sin 6\theta$	A1 (ag)	
	32 32	6	
(iii)	$3\left(2\theta^{3}+(2\theta)^{5}\right)$	D.1	
	$\frac{3}{32} \left(2\theta - \frac{(2\theta)^3}{3!} + \frac{(2\theta)^5}{5!} - \dots \right)$	B1	Expansion of $\sin 2\theta$
	$1\left((6\theta)^3 (6\theta)^5 \right)$		
	$-\frac{1}{32} \left(6\theta - \frac{(6\theta)^3}{3!} + \frac{(6\theta)^5}{5!} - \dots \right)$	B1	Expansion of $\sin 6\theta$
			If B0, give B1 for both expansions correct up to θ^3
	$=\theta^3-2\theta^5+$	B1	
		3	
	OR $f(\theta) = \frac{3}{32}\sin 2\theta - \frac{1}{32}\sin 6\theta$		
	$f^{(3)}(0) = 6, f^{(5)}(0) = -240$ B1B1		
	$f(\theta) = \theta^3 - 2\theta^5 + \dots $ B1		Accept coefficients in any correct form
(iv)	((20) ²		
(41)	$\theta^3 \cos 2\theta = \theta^3 \left(1 - \frac{(2\theta)^2}{2!} + \dots \right)$	M1	Using expansion of $\cos 2\theta$
		Α 1	For completion
	$= \theta^3 - 2\theta^5 + \dots$	A1 2	For completion
	Hence $\sin^3 \theta \cos^3 \theta \approx \theta^3 \cos 2\theta$		

		1	
4(a)(i)			
		B1	2 loops correct
		B1	4 loops correct
	A	B1	Fully correct, continuous and broken
			lines, and no extra loops
(40)			
(ii)	Area is $\int_{0}^{\frac{\pi}{4}} \frac{1}{2} (k \sin 4\theta)^2 d\theta$	M1 A1	For integral of $\sin^2 4\theta$ Correct integral form
	$= \frac{1}{4}k^{2} \int_{0}^{\frac{\pi}{4}} (1 - \cos 8\theta) d\theta = \frac{1}{4}k^{2} \left[\theta - \frac{1}{8}\sin 8\theta \right]^{\frac{\pi}{4}}$	B1B1	For $\int \sin^2 4\theta d\theta = \frac{1}{2}\theta - \frac{1}{16}\sin 8\theta$
			2 16
	$=\frac{1}{16}\pi k^2$	A1 5	Accept 0.196k ²
(b)(i)	$\frac{2x}{a^2} - \frac{2y}{b^2} \frac{dy}{dx} = 0$	M1	
	Gradient at P ₁ is $\frac{b^2x_1}{a^2y_1}$	A1	
	2	MI	
	Tangent is $y - y_1 = \frac{b^2 x_1}{a^2 y_1} (x - x_1)$	M1	
	$\frac{x_1 x}{a^2} - \frac{y_1 y}{b^2} = \frac{x_1^2}{a^2} - \frac{y_1^2}{b^2}$		2 2
	u b u b	M1 A1 (ag)	Using $\frac{x_1^2}{a^2} - \frac{y_1^2}{b^2} = 1$
	$\frac{x_1 x}{a^2} - \frac{y_1 y}{b^2} = 1$	A1 (ag) 5	
(ii)	Q lies on tangent at P ₁ so $\frac{x_1r}{a^2} - \frac{y_1s}{b^2} = 1$	B1	
	Tangent at P ₂ is $\frac{x_2x}{a^2} - \frac{y_2y}{b^2} = 1$		
	Q lies on tangent at P ₂ so $\frac{x_2r}{a^2} - \frac{y_2s}{b^2} = 1$	B1	
	Hence $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ both lie on the		
	line $\frac{rx}{a^2} - \frac{sy}{b^2} = 1$	B1 (ag) 3	For completion
(iii)	Q lies on directrix $\Leftrightarrow r = \pm \frac{a}{e}$	B1	± not required
	P_1P_2 passes through focus ($\pm ae$, 0) if and only if	M1	Using equation of P ₁ P ₂
	$\pm \frac{rae}{a^2} - 0 = 1$,	A1	± not required
	a^{2} i.e. $r = \pm \frac{a}{a}$		
	Hence, if Q lies on a directrix, P_1P_2 passes through a		
	focus	A1 4	Must consider both directrices & foci

Examiner's Report